巨磁阻微光電開關傳感器的原理基于巨磁阻效應,由一層非磁性導電材料分開的兩層磁性材料組成三明治結構。上下兩層的磁化矢量方向可以是相對的,也可以是一致的。前者在界面上的散射 小,傳導電子的平均自由行程長,電阻較小,后者在界面上的散射大,傳導電子的平均自由行程短,電阻較大。為保證基于自旋的散射成為影響電阻的主要成分,薄膜厚度必須小于體材料中的電子自由行程。大部分鐵磁材料的平均自由行程在幾十納米的量級,因此薄膜的厚度應在10nm以下。如此薄的薄膜對制作工藝的要求很高,這也是巨磁阻現象發現得如此晚的一個重要原因。利用薄膜制作工藝,可制作多達十幾層結構的巨磁阻微傳感器。
巨磁阻效應主要用來制作磁記錄裝置中的讀/寫頭。這種微傳感器同樣可用于測量低強度的磁場。在實際應用中,電阻的約翰遜噪聲是需要考慮的一個重要因素。由于噪聲電壓與電阻阻值的平方根成正比,因此敏感元件的電阻值要盡可能低一些,如50nm左右。此外,還需要采用低噪 聲的放大器。另外,巨磁阻微傳感器的一個非常重要的缺點是需要工作在偏置磁場環境中。在較高的偏置磁場下才能獲得相對較大的電阻變化率。在實際測量中,這樣高的磁場強度往往是不允許的,所以實際得到的電阻變化率僅比普通的AMR高出很小的比例。
利用非均勻相合金制成顆粒膜,也可實現巨磁阻效應。這種顆粒膜結構是指微顆爛彌散于薄膜中所產生的復合膜,如常見的鐵、鉆微顆粒嵌于銀、銅等薄膜中。這種非均勻相的體系中,異相界面對電子輸運性質和電、磁光等特性都有明顯影響。這種顆粒膜與多層膜有許多相似之處,二者都屬于二相或多相復合非均勻體系。但顆粒膜中的顆粒呈混亂的統計分布,其制作工藝較簡單且實用。常見制備方法有共蒸、共濺射、離子注入等,實驗初到磁控濺射及離子束濺射等方法來制備。顆粒膜中的巨磁阻效應主要來自界面電子的散射,顆爛膜內部巨磁阻效應的貢獻較小。 |